Abstract

Here, we report a new on-surface synthetic strategy to precisely introduce five-membered units into conjugated polymers from specifically designed precursor molecules that give rise to low-bandgap fulvalene-bridged bisanthene polymers. The selective formation of non-benzenoid units is finely controlled by the annealing parameters, which govern the initiation of atomic rearrangements that efficiently transform previously formed diethynyl bridges into fulvalene moieties. The atomically precise structures and electronic properties have been unmistakably characterized by STM, nc-AFM, and STS and the results are supported by DFT theoretical calculations. Interestingly, the fulvalene-bridged bisanthene polymers exhibit experimental narrow frontier electronic gaps of 1.2 eV on Au(111) with fully conjugated units. This on-surface synthetic strategy can potentially be extended to other conjugated polymers to tune their optoelectronic properties by integrating five-membered rings at precise sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.