Abstract

Over the past decades, the rational synthesis of two-dimensional covalent organic framework (2D COFs) monolayer via on-surface chemistry has been widely explored. Herein, we propose the [2 + 2] photocycloaddition as a novel strategy for large-scale fabrication of COFs from theoretical perspective. Thanks to the symmetry forbidden of thermal [2 + 2] cycloaddition, the molecular precursors carrying vinyl groups will not chemically interact with each other during thermal annealing, which is essential to achieve molecular assembly. The subsequent photocycloaddition of these precursors may produce large-scale 2D COFs at low temperatures, in which the symmetry of molecular assembly remains unchanged. Our results show that 2D COFs can be produced via [2 + 2] photocycloadditions directed from self-assembled precursors, in which alkylbenzene molecules with vinyl groups on side chains exhibit appropriate intermolecular distances. By performing high-throughput calculations, several promising molecular precursors are proposed to achieve large-scale 2D COFs. This work provides an applicable strategy for the large-scale synthesis of 2D carbon materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call