Abstract
On-surface synthesis via covalent coupling of adsorbed precursor molecules on metal surfaces has emerged as a promising strategy for the design and fabrication of novel organic nanoarchitectures with unique properties and potential applications in nanoelectronics, optoelectronics, spintronics, catalysis, etc. Surface-chemistry-driven molecular engineering (i.e., bond cleavage, linkage, and rearrangement) by means of thermal activation, light irradiation, and tip manipulation plays critical roles in various on-surface synthetic processes, as exemplified by the work from the Ernst group in a prior issue of ACS Nano. In this Perspective, we highlight recent advances in and discuss the outlook for on-surface syntheses and molecular engineering of carbon-based nanoarchitectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.