Abstract
Triangulene nanographenes are open‐shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long‐sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl‐anthracene cyclic hexamer and the on‐surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π‐electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.