Abstract
Carbyne, an elusive sp-hybridized linear carbon allotrope, has fascinated chemists and physicists for decades. Due to its high chemical reactivity and extreme instability, carbyne was much less explored in contrast to the sp2-hybridized carbon allotropes such as graphene. Herein, we report the on-surface synthesis of polyynic carbon chains by demetallization of organometallic polyynes on the Au(111) surface; the longest one observed consists of ∼60 alkyne units (120 carbon atoms). The polyynic structure of carbon chains with alternating triple and single bonds was unambiguously revealed by bond-resolved atomic force microscopy. Moreover, an atomically precise polyyne, C14, was successfully produced via tip-induced dehalogenation and ring-opening of the decachloroanthracene molecule (C14Cl10) on a bilayer NaCl/Au(111) surface at 4.7K, and a band gap of 5.8eV was measured by scanning tunnelling spectroscopy, in a good agreement with the theoretical HOMO-LUMO gap (5.48eV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.