Abstract

On-surface synthesis, as a bottom-up synthetic method, has been proven to be a powerful tool for atomically precise fabrication of low-dimensional carbon nanomaterials over the past 15 years. This method relies on covalent coupling reactions that occur on solid substrates such as metal or metal oxide surfaces under ultra-high-vacuum conditions, and the achievements with this method have greatly enriched fundamental science and technology. However, due to the complicated reactivity of organic groups, distinct diffusion of reactants and intermediates, and irreversibility of covalent bonds, achieving the high selectivity of covalent coupling reactions on surfaces remains a great challenge. As a result, only a few on-surface covalent coupling reactions, mainly involving dehalogenation and dehydrogenation homocoupling, are frequently used in the synthesis of low-dimensional carbon nanosystems. In this Perspective, we focus on the development and synthetic applications of on-surface cross-coupling reactions, mainly Ullmann, Sonogashira, Heck, and divergent cross-coupling reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.