Abstract

We establish a characterization of supernilpotent Mal’cev algebras which generalizes the affine structure of abelian Mal’cev algebras and the recent characterization of 2-supernilpotent Mal’cev algebras. We then show that for varieties in which the two-generated free algebra is finite: (1) neutrality of the higher commutators is equivalent to congruence meet-semidistributivity, and (2) the class of varieties which interpret a Mal’cev term in every supernilpotent algebra is equivalent to the existence of a weak difference term. We then establish properties of the higher commutator in the aforementioned second class of varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.