Abstract

The asymptotic tail behaviour of sums of independent subexponential random variables is well understood, one of the main characteristics being the principle of the single big jump. We study the case of dependent subexponential random variables, for both deterministic and random sums, using a fresh approach, by considering conditional independence structures on the random variables. We seek sufficient conditions for the results of the theory with independent random variables to still hold. For a subexponential distribution, we introduce the concept of a boundary class of functions, which we hope will be a useful tool in studying many aspects of subexponential random variables. The examples we give demonstrate a variety of effects owing to the dependence, and are also interesting in their own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.