Abstract

In this paper, we investigate the suitability of embedding Internet hosts into a Euclidean space given their pairwise distances (as measured by round-trip time). Using the classical scaling and matrix perturbation theories, we first establish the (sum of the) magnitude of negative eigenvalues of the (doubly centered, squared) distance matrix as a measure of suitability of Euclidean embedding. We then show that the distance matrix among Internet hosts contains negative eigenvalues of large magnitude, implying that embedding the Internet hosts in a Euclidean space would incur relatively large errors. Motivated by earlier studies, we demonstrate that the inaccuracy of Euclidean embedding is caused by a large degree of triangle inequality violation (TIV) in the Internet distances, which leads to negative eigenvalues of large magnitude. Moreover, we show that the TIVs are likely to occur locally; hence the distances among these close-by hosts cannot be estimated accurately using a global Euclidean embedding. In addition, increasing the dimension of embedding does not reduce the embedding errors. Based on these insights, we propose a new hybrid model for embedding the network nodes using only a two-dimensional Euclidean coordinate system and small error adjustment terms. We show that the accuracy of the proposed embedding technique is as good as, if not better than, that of a seven-dimensional Euclidean embedding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.