Abstract

To study the mechanisms of laser destruction in exposing the posterior lens capsule (PLC) tissue to Nd:YAG laser irradiation, and to evaluate its side effects on the cornea. The experiment involved 6 autopsy samples of human posterior lens capsule with different optical and mechanical properties, which were exposed to laser irradiation. We used the Nd:YAG ophthalmic laser LPULSA SYL-9000 Premio manufactured by «LightMed» (Taiwan/USA) and an experimental Nd:YAG laser system (1.064 μm). The following parameters were compared: the power of the incident radiation and radiation transmitted through the PLC, the mechanical stresses in the PLC tissue, the kinetic energy of the laser ablation products, and the pressure of gas bubbles during laser exposure in capsule samples of different densities. In the clinical part of the work, the negative effects of Nd:YAG laser on the cornea at different PLC densities were assessed using the endothelial microscope SP 3000P («Topcon», Japan). The experiment showed that in hard samples of PLC there are star-shaped point perforations with a diameter of 50±20 μm with partial rarefaction around the point defects. Damage to soft PLC samples in the form of large complete perforations was up to 200 µm in size. The temperature of laser irradiation necessary to achieve breakdown in soft PLC samples was 90 °C, in hard samples - 120 °C. The results of the experiment indicate that the final outcome - destruction of the PLC tissue - is safer to achieve not by increasing the energy, but by increasing the number of laser pulses. Clinical study results confirm a significant effect of the density of PLC on the values of laser energy and on the state of the cornea after laser intervention. The experimental data on the mechanisms of laser destruction of the lens capsule should contribute to the development of new and improvement of already known technologies aimed at reducing the risks associated with laser surgeries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.