Abstract
An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. We characterize, in this article, the strongly nil cleanness of matrices over projective-free rings in terms of the factorizations of their characteristic polynomials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.