Abstract

This work focuses on a class of stochastic damping Hamiltonian systems with state-dependent switching, where the switching process has a countably infinite state space. After establishing the existence and uniqueness of a global weak solution via the martingale approach under very mild conditions, the paper next proves the strong Feller property for regime-switching stochastic damping Hamiltonian systems by the killing technique together with some resolvent and transition probability identities. The commonly used continuity assumption for the switching rates qkl(⋅) in the literature is relaxed to measurability in this paper. Finally the paper provides sufficient conditions for exponential ergodicity and large deviations principle for regime-switching stochastic damping Hamiltonian systems. Several examples on regime-switching van der Pol and (overdamped) Langevin systems are studied in detail for illustration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call