Abstract

A strong edge-colouring of a graph G is a proper edge-colouring such that every path of length 3 uses three different colours. In this paper we improve some previous results on the strong edge-colouring of subcubic graphs by showing that every subcubic graph with maximum average degree strictly less than 73 (resp. 52, 83, 207) can be strongly edge-coloured with six (resp. seven, eight, nine) colours. These upper bounds are optimal except the one of 83. Also, we prove that every subcubic planar graph without 4-cycles and 5-cycles can be strongly edge-coloured with nine colours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.