Abstract
Let B be a ball in \({\mathbb{R}^{N}}\), N ≥ 1, let m be a possibly discontinuous and unbounded function that changes sign in B and let 0 < p < 1. We study existence and nonexistence of strictly positive solutions for semilinear elliptic problems of the form \({-\Delta u=m(x) u^{p}}\) in B, u = 0 on ∂B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nonlinear Differential Equations and Applications NoDEA
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.