Abstract

Two recent papers by Petruccelli and Woolford (1984) and Chan et al. (1985) showed that the key element governing ergodicity of a threshold AR(1) model is the joint behavior of the two linear AR(1) pieces falling in the two boundary threshold regimes. They used essentially the necessary and sufficient conditions for ergodicity of a general Markov chain of Tweedie (1974), (1975) in a rather clever manner. However, it is difficult to extend the results to the more general threshold ARMA models. Besides, irreducibility is also required to apply Tweedie's results. In this paper, instead of pursuing the ideas in Tweedie's results, we shall develop a criterion similar in spirit to the technique used by Beneš (1967) in the context of continuous-time Markov chains. Consequently, we derive a necessary and sufficient condition for existence of a strictly stationary solution of a general non-linear ARMA model to be introduced in Section 2 of this paper. This condition is then applied to the threshold ARMA(1, q) model to yield a sufficient condition for strict stationarity which is identical to the condition given by Petruccelli and Woolford (1984) for the threshold AR(1). Hence, the conjecture that the moving average component does not affect stationarity is partially verified. Furthermore, under an additional irreducibility assumption, ergodicity of a non-linear ARMA model is established. The paper then concludes with a necessary condition for stationarity of the threshold ARMA(1, q) model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.