Abstract

In a real Hilbert space, let the VIP denote a pseudomonotone variational inequality problem with Lipschitz continuity operator, and let the CFPP indicate a common fixed-point problem of finitely many nonexpansive mappings and an asymptotically nonexpansive mapping. On the basis of the Mann iteration method, the viscosity approximation method and the hybrid steepest-descent method, we propose and analyze two strengthened inertial-type subgradient extragradient rules with adaptive step sizes for solving the VIP and CFPP. With the help of suitable restrictions, we show the strong convergence of the suggested rules to a common solution of the VIP and CFPP, which is the unique solution of a hierarchical variational inequality (HVI).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.