Abstract
In times of a global pandemic, public transit can be crucial to spreading viruses, especially in big cities. Many works have shown that the human infection risk could be extremely high due to the length of exposure time, transmission routes, and structural characteristics during public transportation, and this can result in the rapid spread of the infection. Vaccines are often part of strategies to reduce contagion; however, they can be scarce in pandemic settings. Considering real-world and large-scale traffic data, this work proposes using time-varying multilayer networks to identify the main critical places to be prioritized in interventions, such as vaccination campaigns, to help reduce contagion on public transit. We exemplify our strategy in different vaccination scenarios. First, when considering only critical bus stops as priority vaccination points, determined by our approach, we indicate that focusing on vaccination in these locations reduces the spread of infection using fewer doses than a random vaccination. In another experiment, we demonstrate the flexibility of our approach in identifying other critical points of interest, healthcare units in this case. Vaccination in these vital health units could also be a viable strategy to curb contagion using a predetermined number of doses. The approach proposed in this study is not limited to vaccination strategies. It also applies to other problems that share similar properties, even in several different contexts, such as optimization in public transit or exploring different points of interest to gather insights from other issues of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.