Abstract

We consider various notions of strains---quantitative measures for the deviation of a linear transformation from an isometry. The main approach, which is motivated by physical applications and follows the work of [12], is to select a Riemannian metric on $GL_n$, and use its induced geodesic distance to measure the distance of a linear transformation from the set of isometries. We give a short geometric derivation of the formula for the strain measure for the case where the metric is left-$GL_n$-invariant and right-$O_n$-invariant.We proceed to investigate alternative distance functions on $GL_n$, and the properties of their induced strain measures. We start by analyzing Euclidean distances, both intrinsic and extrinsic. Next, we prove that there are no bi-invariant distances on $GL_n$. Lastly, we investigate strain measures induced by inverse-invariant distances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call