Abstract

We study a predictive control formulation for discrete-time non-linear plant models where controller output data is transmitted over an unreliable communication channel. The channel is affected by random data-loss and does not provide acknowledgments of receipt. To achieve robustness with respect to dropouts, at every sampling instant the controller transmits packets of data. These contain possible control inputs for a finite number of future time instants, and minimize a finite horizon cost function. At the plant actuator side, received packets are buffered, providing the plant inputs. Within this context, we adopt a stochastic Lyapunov function approach to establish stability results of this networked control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.