Abstract
In this paper, we use Schauder’s fixed point to establish the existence of at least one solution for a functional nonlocal stochastic differential equation under sufficient conditions in the space of all square integrable stochastic processes with a finite second moment. We state and prove the conditions which guarantee the uniqueness of the solution. We solve a nonlinear example analytically and obtain the initial condition which makes the solution passes through a random position with a given normal distribution at a specified time. Also, the Milstein scheme to this example is studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.