Abstract
We consider the problem of multiple sensor scheduling for remote state estimation of multiple process over a shared link. In this problem, a set of sensors monitor mutually independent dynamical systems in parallel but only one sensor can access the shared channel at each time to transmit the data packet to the estimator. We propose a stochastic event-based sensor scheduling in which each sensor makes transmission decisions based on both channel accessibility and distributed event-triggering conditions. The corresponding minimum mean squared error (MMSE) estimator is explicitly given. Considering information patterns accessed by sensor schedulers, time-based ones can be treated as a special case of the proposed one. By ultilizing realtime information, the proposed schedule outperforms the time-based ones in terms of the estimation quality. Resorting to solving an Markov decision process (MDP) problem with average cost criterion, we can find optimal parameters for the proposed schedule. As for practical use, a greedy algorithm is devised for parameter design, which has rather low computational complexity. We also provide a method to quantify the performance gap between the schedule optimized via MDP and any other schedules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.