Abstract
Motivated by multi-user optimization problems and non-cooperative Nash games in uncertain regimes, we consider stochastic Cartesian variational inequality problems where the set is given as the Cartesian product of a collection of component sets. First, we consider the case where the number of the component sets is large and develop a randomized block stochastic mirror-prox algorithm, where at each iteration only a randomly selected block coordinate of the solution vector is updated through implementing two consecutive projection steps. We show that when the mapping is strictly pseudo-monotone, the algorithm generates a sequence of iterates that converges to the solution of the problem almost surely. When the maps are strongly pseudo-monotone, we prove that the mean-squared error diminishes at the optimal rate. Second, we consider large-scale stochastic optimization problems with convex objectives and develop a new averaging scheme for the randomized block stochastic mirror-prox algorithm. We show that by using a different set of weights than those employed in the classical stochastic mirror-prox methods, the objective values of the averaged sequence converges to the optimal value in the mean sense at an optimal rate. Third, we consider stochastic Cartesian variational inequality problems and develop a stochastic mirror-prox algorithm that employs the new weighted averaging scheme. We show that the expected value of a suitably defined gap function converges to zero at an optimal rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.