Abstract

This paper examines how to compare stellar limb-darkening coefficients evaluated from model atmospheres with those derived from photometry. Different characterizations of a given model atmosphere can give quite different numerical results (even for a given limb-darkening `law'), while light-curve analyses yield limb-darkening coefficients that are dependent on system geometry, and that are not directly comparable to any model-atmosphere representation. These issues are examined in the context of exoplanetary transits, which offer significant advantages over traditional binary-star eclipsing systems in the study of stellar limb darkening. `Like for like' comparisons between light-curve analyses and new model-atmosphere results, mediated by synthetic photometry, are conducted for a small sample of stars. Agreement between the resulting synthetic-photometry/atmosphere-model (SPAM) limb-darkening coefficients and empirical values ranges from very good to quite poor, even though the targets investigated show only a small dispersion in fundamental stellar parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call