Abstract

Abstract Introductory. In the theory of random processes we may distinguish between ordinary processes and point processes. The former are concerned with a quantity, say x (t), which varies with time t, the latter with events, incidences, which may be represented as points along the time axis. For both categories, the stationary process is of great importance, i. e., the special case in which the probability structure is independent of absolute time. Several examples of stationary processes of the ordinary type have been examined in detail (see e. g. H. Wold 1). The literature on stationary point processes, on the other hand, has exclusively been concerned with the two simplest cases, viz. the Poisson process and the slightly more general process arising in renewal theory (see e. g. J. Doob 3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.