Abstract

In this study, AlGaN/GaN Fin-HEMTs with different nanochannel geometric parameters were fabricated and comprehensively characterized. In the arcuate Fin-HEMTs, where the sidewalls arcuate from the source to the drain side, enhancements in the drain current density and transconductance were observed. By extracting and analyzing parameters obtained from small-signal measurements and conducting an analysis of gate capacitance, it was demonstrated that the enhancement can be attributed to the modulation of gate capacitance. This enhances the control capability of the gate over channel carriers, resulting in increased transconductance of the device. Due to the enhanced transconductance, the fT and fmax of the arcuate Fin-HEMTs are both enhanced. Notably, the arcuate Fin-HEMTs achieved a power-added efficiency of 71.4% at a frequency of 3.6 GHz and a drain voltage of 20 V. Meanwhile, the linearity of the arcuate Fin-HEMTs is improved compared with the conventional Fin-HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.