Abstract

The article treats the existence of standing waves and solutions to gradient-flow equation for the Landau–De Gennes models of liquid crystals, a state of matter intermediate between the solid state and the liquid one. The variables of the general problem are the velocity field of the particles and the Q-tensor, a symmetric traceless matrix which measures the anisotropy of the material. In particular, we consider the system without the velocity field and with an energy functional unbounded from below. At the beginning we focus on the stationary problem. We outline two variational approaches to get a critical point for the relative energy functional: by the Mountain Pass Theorem and by proving the existence of a least energy solution. Next we describe a relationship between these solutions. Finally we consider the evolution problem and provide some Strichartz-type estimates for the linear problem. By several applications of these results to our problem, we prove via contraction arguments the existence of local solutions and, moreover, global existence for initial data with small L^2-norm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call