Abstract
The paper investigates the following problem. Let bimodules N, M yield a stable equivalence of Morita type between self-injective K-algebras A and E. Further, let bimodules S, T yield a stable equivalence of Morita type between self-injective K-algebras B and F. Then we want to know whether the functor M ⊗ A − ⊗ B S: mod(A ⊗ K B op ) → mod(E ⊗ K F op ) induces a stable equivalence between A ⊗ K B op and E ⊗ K F op . There is given a reduction of this problem to some smaller subcategories for self-injective algebras. Moreover, new invariants of stable equivalences of Morita type are constructed in a general case of arbitrary finite-dimensional algebras over a field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.