Abstract
This paper deals with the stabilization problem of an axially moving string with a tip mass attached at the free end and subject to an external disturbance. The disturbance here is not uniformly bounded, and it is assumed to be exponentially increasing. First, the tip mass equation is designed under a boundary controller. By using this equation, the active disturbance rejection control (ADRC) technique is applied to design a disturbance observer, and it is shown that the observer can be estimated exponentially. Then, the closed‐loop system is formulated and the well‐posedness of the model is proved in the framework of the semigroup theory. The stability of the closed‐loop system is then proved by means of the multiplier technique, where the energy system converges to equilibrium with an exponential manner. The efficiency of the obtained results is verified through numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.