Abstract

AbstractThe flow past an obstacle is a fundamental object in fluid mechanics. In 1967 Finn and Smith proved the unique existence of stationary solutions, called the physically reasonable solutions, to the Navier–Stokes equations in a two-dimensional exterior domain modeling this type of flows when the Reynolds number is sufficiently small. The asymptotic behavior of their solution at spatial infinity has been studied in detail and well understood by now, while its stability has remained open due to the difficulty specific to the two-dimensionality. In this paper, we prove that the physically reasonable solutions constructed by Finn and Smith are asymptotically stable with respect to small and well-localized initial perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.