Abstract
This article deals with stability of discrete-time switched systems. Given a family of nonlinear systems and the admissible switches among the systems in the family, we first propose a class of switching signals under which the resulting switched system is globally asymptotically stable. We allow unstable systems in the family and our stability condition depends solely on asymptotic behaviour of the switching signals. We then discuss algorithmic construction of the above class of switching signals, and show that in the presence of exogenous inputs and outputs, a switching signal so constructed also ensures input/output-to-state stability for discrete-time switched nonlinear systems. We finally show that our class of switching signals that ensures global asymptotic stability also extends to the continuous-time setting with minor modifications under standard assumptions. We employ multiple Lyapunov-like functions and graph theoretic tools as the main apparatuses for our analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.