Abstract

Perturbed exponential system {eiλkχ}keZ (where {λn} is some sequence of real numbers) isconsidered in Morrey spaces Lp,α (0, π) These spaces arenon-separable (except for exceptional cases), and thereforethe above system is not complete in them. Based on theshift operator, we define the subspace Mp,a (0, π)C Lp,α (0, π) where continuous functions aredense. We find a condition on the sequence {λn} which issufficient for the above system to form a basis for thesubspace Mp,a (0, π). Our results are the analogues ofthose obtained earlier for the Lebesgue spaces Lp. Wealso establish an analogue of classical Levinson theorem onthe completeness of above system in the spaces Lp,1 <= p <=+∞

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.