Abstract

This study presents the stability conditions of a precision motion system driven by two reluctance actuators. First, an electromechanical model is formulated based on the lumped parameter model to describe the interaction among the electrical, magnetic, and mechanical domains. The electromechanical model is then used to study the steady-state operation conditions and determine the determined the critical input current for stable behavior of the reluctance actuator motion system. The feedforward controller is proposed to linearize the behavior of the reluctance actuator and improve the performance of the system. The simulation results in time-domain show that the system without feedforward controller is stable for input current less than the critical current. The results also show that using a feedforward controller improves tracking performances in the time-domain and increases bandwidth frequency in the frequency-domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.