Abstract
The stability of nonlinear explicit difference schemes with not, in general, open domains of the scheme operators are studied. For the case of path-connected, bounded, and Lipschitz domains, we establish the notion that a multi-level nonlinear explicit scheme is stable iff (if and only if) the corresponding scheme in variations is stable. A new modification of the central Lax-Friedrichs (LxF) scheme is developed to be of the second order accuracy. The modified scheme is based on nonstaggered grids. A monotone piecewise cubic interpolation is used in the central scheme to give an accurate approximation for the model in question. The stability of the modified scheme is investigated. Some versions of the modified scheme are tested on several conservation laws, and the scheme is found to be accurate and robust. As applied to hyperbolic conservation laws with, in general, stiff source terms, it is constructed a second order nonstaggered central scheme based on operator-splitting techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.