Abstract
In this paper an approximate equation is derived to describe smooth parts of the stability boundary for linear Hamiltonian systems, depending on arbitrary number of parameters. With this equation, we can obtain parameters corresponding to the stability boundary, as well as to the stability and instability domains, provided that one point on the stability boundary is known. Then differential equations describing the evolution of eigenvalues and eigenvectors along a curve on the stability boundary surface are derived. These equations also allow us to obtain curves belonging to the stability boundary. Applications to linear gyroscopic systems are considered and studied with examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.