Abstract
This work presents the realization and the application of an user-friendly electrochemical platform based on screen-printed electrodes for the simultaneous determination of nickel and cobalt ions in real samples by means of square wave adsorptive stripping voltammetry (SWAdSV). The sensor was realized by electrodepositing in situ a bismuth film onto graphite screen-printed electrodes (GSPEs). The sensor surface was fully characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).The experimental conditions for the determination of nickel and cobalt in the form of dimethylglyoximate complexes were studied and optimized. Linear calibration curves for Ni(II) and Co(II), determined individually and together, in the range 10–40 μg/L for nickel and 10–60 μg/L for cobalt, respectively, were obtained. The limits of detection for nickel and cobalt determination were 2.5 μg/L and 2.4 μg/L, respectively. The performance of the sensor in terms of reproducibility and selectivity was also studied. The applicability of the developed platform was assessed by determining nickel and cobalt in samples deriving from an industrial process of recycling exhausted batteries and in soil samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.