Abstract

AbstractIt is well known to us that a graph of diameter has at least eigenvalues. A graph is said to be Laplacian (resp, normalized Laplacian) ‐extremal if it is of diameter having exactly distinct Laplacian (resp, normalized Laplacian) eigenvalues. A graph is split if its vertex set can be partitioned into a clique and a stable set. Each split graph is of diameter at most 3. In this paper, we completely classify the connected bidegreed Laplacian (resp, normalized Laplacian) 2‐extremal (resp, 3‐extremal) split graphs using the association of split graphs with combinatorial designs. Furthermore, we identify connected bidegreed split graphs of diameter 2 having just four Laplacian (resp, normalized Laplacian) eigenvalues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.