Abstract

AbstractNowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods.In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one‐dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8].The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call