Abstract

We present a cellular-automaton model of a reaction-diffusion excitable system with concentration dependent inhibition of the activator, and study the dynamics of mobile localizations (gliders) and their generators. We analyze a three-state totalistic cellular automaton on a two-dimensional lattice with hexagonal tiling, where each cell connects with 6 others. We show that a set of specific rules support spiral glider-guns (rotating activator-inhibitor spirals emitting mobile localizations) and stationary localizations which destroy or modify gliders, along with a rich diversity of emergent structures with computational properties. We describe how structures are created and annihilated by glider collisions, and begin to explore the necessary processes that generate this kind of complex dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.