Abstract
We consider spherically symmetric motions of inviscid compressible gas surrounding a solid ball under the gravity of the core. Equilibria touch the vacuum with finite radii, and the linearized equation around one of the equilibria has time-periodic solutions. To justify the linearization, we should construct true solutions for which this time-periodic solution plus the equilibrium is the first approximation. But this leads us to difficulty caused by singularities at the free boundary touching the vacuum. We solve this problem by the Nash-Moser theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.