Abstract

This paper deals with near-optimal spectrum sensing of orthogonal frequency division multiplexing (OFDM) signals to achieve reliable detection at low signal-to-noise ratio (SNR). The likelihood ratio test (LRT), a simple hypothesis test , delivers the optimal performance, but it requires that the parameters involved in the test are known. Hence, the generalized likelihood ratio test (GLRT), a composite hypothesis test , has often been employed. However, GLRT-based detectors involve biased parameter estimation, which may lead to inferior performance. In this paper, with proper approximation, the LRT is reduced to a simpler form, which only requires the knowledge of noise power. Then a novel unbiased and consistent estimator of the noise power is developed. This estimator is combined with the approximate LRT, leading to an asymptotic simple hypothesis test (ASHT). Two ASHT-based detectors are presented for cases with and without time synchronization, and their theoretical performances are analyzed. Simulation results show that the ASHT-based detectors deliver performances very close to that of the optimal LRT, and significantly outperform the existing GLRT-based detectors. It is also shown that the ASHT-based detectors exhibit robustness against the influence of multipath channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.