Abstract

In this paper, we study the one-dimensional wave equation with Boltzmann damping. Two different Boltzmann integrals that represent the memory of materials are considered. The spectral properties for both cases are thoroughly analyzed. It is found that when the memory of system is counted from the infinity, the spectrum of system contains a left half complex plane, which is sharp contrast to the most results in elastic vibration systems that the vibrating dynamics can be considered from the vibration frequency point of view. This suggests us to investigate the system with memory counted from the vibrating starting moment. In the latter case, it is shown that the spectrum of system determines completely the dynamic behavior of the vibration: there is a sequence of generalized eigenfunctions of the system, which forms a Riesz basis for the state space. As the consequences, the spectrum-determined growth condition and exponential stability are concluded. The results of this paper expositorily demonstrate the proper modeling the elastic systems with Boltzmann damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.