Abstract
In this study, a combination of the hybrid Chebyshev spectral technique and the homotopy perturbation method is used to construct an iteration algorithm for solving nonlinear boundary value problems. Test problems are solved in order to demonstrate the efficiency, accuracy and reliability of the new technique and comparisons are made between the obtained results and exact solutions. The results demonstrate that the new spectral homotopy perturbation method is more efficient and converges faster than the standard homotopy analysis method. The methodology presented in the work is useful for solving the BVPs consisting of more than one differential equation in bounded domains.Â
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.