Abstract

Abstract Let $L^2({{\mathbb{D}}})$ be the space of measurable square-summable functions on the unit disk. Let $L^2_a({{\mathbb{D}}})$ be the Bergman space, that is, the (closed) subspace of analytic functions in $L^2({{\mathbb{D}}})$. $P_+$ stays for the orthogonal projection going from $L^2({{\mathbb{D}}})$ to $L^2_a({{\mathbb{D}}})$. For a function $\varphi \in L^\infty ({{\mathbb{D}}})$, the Toeplitz operator $T_\varphi : L^2_a({{\mathbb{D}}})\to L^2_a({{\mathbb{D}}})$ is defined as $$\begin{align*} & T_\varphi f=P_+\varphi f, \quad f\in L^2_a({{\mathbb{D}}}). \end{align*}$$The main result of this article are spectral asymptotics for singular (or eigen-) values of compact Toeplitz operators with logarithmically decaying symbols, that is, $$\begin{align*} & \varphi(z)=\varphi_1(e^{i\theta})\, (1+\log(1/(1-r)))^{-\gamma},\quad \gamma>0, \end{align*}$$where $z=re^{i\theta }$ and $\varphi _1$ is a continuous (or piece-wise continuous) function on the unit circle. The result is applied to the spectral analysis of banded (including Jacobi) matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call