Abstract

Motivated by the earlier results of Masoero and De Benedetti (Nonlinearity 23:2501, 2010) and Shapiro et al. (Commun Math Phys 311(2):277–300, 2012), we discuss below the asymptotic of the solvable part of the spectrum for the quasi-exactly solvable quartic oscillator. In particular, we formulate a conjecture on the coincidence of the asymptotic shape of the level crossings of the latter oscillator with the asymptotic shape of zeros of the Yablonskii–Vorob’ev polynomials. Further we present a numerical study of the spectral monodromy for the oscillator in question.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.