Abstract
A method of spatial filtering is proposed as a preprocessor to restore the high resolution performance of eigendecomposition-based methods when used with a linear array for angle-of-arrival (AOA) estimation in the presence of spatially distributed coherent interference (SDCI). Applying the conventional bandpass filters used in the spatial frequency domain, the spatial filtering method effectively suppresses the unwanted coherence interference outside a specified frequency region. Therefore, the success of the method hinges on the assumption that direct arrival and its coherent interference are well separated in spatial frequency (in angle). Under this assumption, the eigendecomposition methods with a spatial filtering preprocessor can give accurate AOA estimates of direct arrivals in spite of the presence of SDCI. Simulation results are shown for the case of scattering from an infinite circular cylinder, using discrete prolate spheroidal sequences as the optimum band-pass preprocessing filters, and a uniformly spaced linear array in a conjunction with the MUSIC algorithm.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.