Abstract

In this paper we show that if X is a T1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_1$$\\end{document}-space with a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base whose elements have compact closure, then d(X)≤c(X)·2ψ(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d(X)\\le c(X)\\cdot 2^{\\psi (X)}$$\\end{document} and therefore, for such spaces we have d(X)ψ(X)=c(X)ψ(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d(X)^{\\psi (X)} = c(X)^{\\psi (X)}$$\\end{document}. This result allows us to restate several known upper bounds of the cardinality of a Hausdorff space X by replacing in them d(X) with c(X). In addition, we show that for such spaces X Šapirovskiĭ’s inequality d(X)≤πχ(X)c(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d(X)\\le \\pi \\chi (X)^{c(X)}$$\\end{document}, which is known to be true for regular Hausdorff spaces, is also valid. In the case when the space X is in addition sequential or radial, we show that |X|≤2c(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le 2^{c(X)}$$\\end{document}. This result extends two theorems of Arhangel′\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$'$$\\end{document}skiĭ to the class of Hausdorff spaces with a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base whose elements have compact closures. We also show that spaces with a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base with elements with compact closures are α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document}-favorable in the Banach–Mazur game, which implies such spaces are Baire. It was shown in Bella et al. (Quaest Math 46(4):745–760, 2023) that if a Hausdorff space X has a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base consisting of elements with compact closure, then |X|≤2wL(X)t(X)ψc(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le 2^{wL(X)t(X)\\psi _c(X)}$$\\end{document}. We give a variation of this result by showing |X|≤πχ(X)wL(X)ot(X)ψc(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le \\pi \\chi (X)^{wL(X)\ extrm{ot}(X)\\psi _c(X)}$$\\end{document} for such a space X. Note that since wL(X)ot(X)≤c(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$wL(X)\ extrm{ot}(X)\\le c(X)$$\\end{document}, this result is at least as good as that given by Sun (Proc Am Math Soc 104:313–316, 1988). We also give a possible improvement of the bound in Bella et al. (2023) by showing that |X|≤2wL(X)wt(X)ψc(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le 2^{wL(X)wt(X)\\psi _c(X)}$$\\end{document} for a Hausdorff space X with a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base consisting of elements with compact closure. This uses the weak tightness wt(X) defined in Carlson (Topol Appl 249:103–111, 2018), which has the property ot(X)≤wt(X)≤t(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{ot}(X)\\le wt(X)\\le t(X)$$\\end{document}. We also show that if X is a Hausdorff homogeneous space with a π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\pi $$\\end{document}-base consisting of elements with compact closure (such spaces are locally compact), then |X|≤wL(X)wt(X)πχ(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le wL(X)^{wt(X)\\pi \\chi (X)}$$\\end{document}. This generalizes the result in Bella and Carlson (Monatsh Math 192(1):39–48, 2020) that if X is a homogeneous compactum, then |X|≤2wt(X)πχ(X)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|X|\\le 2^{wt(X)\\pi \\chi (X)}$$\\end{document}.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call