Abstract
Let S be a pseudo-metric space with pseudo-metric d. Then for each nonempty A ⊆ S, x ∈ cl (A) if and only if d(x, A) = 0, and d(x, y) = d(y, x) for all x, y ∈S. Thus, if d(x, y) = 0, then x∈cl({Y}) by the first requirement and Y∈cl({x}) by the second requirement. It is natural then to expect that if a topological space S is to be pseudo-metrizable, it should at least satisfy the requirement:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.