Abstract

Routing in the newer generation of network transmission methods may be performed at various levels of the IP stack such as datagram, TCP stream, and application levels. It is important in the use of these methods to compute the routes that minimize the end-to-end delays for the specific routing mechanism. We formulate an abstract network path computation problem, the dynamic quickest path problem, to encompass a number of message forwarding mechanisms including circuit switching, Internet Protocol, and their variations. This problem deals with the transmission of a message from a source to a destination with the minimum end-to-end delay over a network with propagation delays and dynamic bandwidth constraints on the links. The available bandwidth for each link is specified as a piecewise constant function. We present for each message forwarding mechanism or mode an algorithm to compute a path with the minimum end-to-end delay for a given message size. Our algorithms with suitable network restrictions have polynomial time complexity in the size of the network and total number of segments in the bandwidth list.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.