Abstract
This paper contains a thorough investigation of topological, geometrical, and structural properties of Fréchet spaces representable as a strict projective limit of a sequence of Hilbert spaces, and also of their strong duals, which are representable as a strict inductive limit of a sequence of Hilbert spaces. With the help of families of these spaces, representations are given for the topologies of strict inductive limits of nuclear Fréchet spaces and their strong duals. In particular, these results are applicable for representing the topologies of the space of test functions and the space of generalized functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Russian Academy of Sciences. Izvestiya Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.