Abstract

This paper covers the topic of both the pth moment (p⩾2) and almost sure stability of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. We partially use a known result on exponential stability of impulsive stochastic functional differential systems, based on the Razumikhin type technique, and extend it to the case of stochastic neural networks using the Lyapunov function method and a Gronwall type inequality. Additionally, we consider the stability with respect to a general decay function which includes exponential, but also more general lower rate decay functions as the polynomial and the logarithmic ones. This fact gives us the opportunity to study general decay almost sure stability, even when the exponential one cannot be discussed. Suitable examples which support the theory are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.